Notes from ICML 2016 Held in New York
Summary
Attended the biggest ever machine learning conference in number of participants and papers. Red hot interest in deep learning and reinforcement learning. Great advancements in vision (Microsoft deep residual networks 1000 level deep neural networks), sound to text (Bidu Deepspeech 2.0), reinforcement learning (Deepmind A3C algorithm, a AI player learns to explore and play in 3D Lybrinth maze, folks who developed AlphaGo). Image captioning /understanding getting even more sophisticated (dense captioning work by Fei Fei and team). Language understanding is still lagging and needs breakthrough, however a couple of papers from Metamind about question answering system on text and especially on images seemed promising.
Active areas that need more digging
- Memory /attention,
- Ways to teach machines with less data. Currently deep learning is data hungry, needs lots of annotated data
- Understanding the story in an image (Dr Fei Fei work)
- Text understanding, lags image and speech
My personal conclusion is that there is still a lot to go towards the goal of strong AI. Though AlphaGo (Deepmind system that beat Go) and DeepQ are great strides in AI, these systems only learn by intuition encoded in neural network weights backed by huge compute resources, and this learning seems to be different from the way humans learn. A true AI systems should be able to use the same architecture and apply to car driving, learning to play chess, a new language or cook. I feel if breakthroughs are not made in a few more years, there could be another AI winter coming. Also at the same time it feels we are almost there to the quest of true AI!
Industry
- Metamind acquired by Salesforce. Should be watching the salesforce conference announcements how they indent to use deep learning technologies.
- NVidia and NYU partner to develop end to end neural network for autonomous cars
- Clafiai – NY based startup for image captioning. Interesting use case for CMS and for accesibility.
- Netflix – Patterns for machine learning. Netflix uses Time machine an interesting architecture to train models using production data.
- Maluuba – Upcoming Canadian startup that specializes in natural langauge processing. Claimed that thier results are better than Google/Facebook.
Reading List For Papers presented
All papers presented at ICML 2016
My synthesized list to read over
- Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin
- Pixel Recurrent Neural Networks (Best paper award)
- Dueling Network Architectures for Deep Reinforcement Learning (Best paper award)
- Control of Memory, Active Perception, and Action in Minecraft
- Ask Me Anything: Dynamic Memory Networks for Natural Language Processing (Metamind Question Answering)
- Dynamic Memory Networks for Visual and Textual Question Answering (Metamind on question answering on images e.g. ask question what sports is he playing on an image!)
- Asynchronous Methods for Deep Reinforcement Learning
- Learning Simple Algorithms from Examples
Important List for Papers Referenced From Previous Conferences
- Teaching Machines to Read and Comprehend.
- Neural Turing Machines.
- End-To-End Memory Networks
- Playing Atari with Deep Reinforcement Learning
People Met
- Dr Fei-Fei Li (Stanford) after her keynote. Her work on image captioning is covered on NYTimes. Interesting talk about deep captioning her latest work on understanding the story.
- Yauan Lecunn (NYU) after his workshop discussion asked about meta thinking, learning to think. Also asked if he will be teaching the deep learning course at NYU next spring, which he affirmed.
- David Silver (Google Deepmind). Excellent tutorial on deep reinforcement learning, that learnt to play arcade game just from raw pixel data, and alphago. Asked him question what are the limitations, and he told me that challenges are for robotics where decisions have to made quicker, and for rewards that are far in the future e.g. needle in the hawstack rewards.
- Richard Socher (Metamind CEO/ Bought by Salesforce). Chat at the poster session about his paper on question answering system on text and images. Am curious to know how Salesforce intends to use deep learning. Wonder if SugarCrm is diving into machine learning.
- Matthew Zeiler (ClarifAI CEO). Meeting at the Intrepid after party. Clarifi provides api for image analysis. Discussion on interesting use cases for news industry.
- Justin Basilico (Machine Learning Netflix). Movie recommendations, which rows and position the movie appears in etc, all driven by machine learning. Netflix has a catalog of machine learning design patterns. Discussion about the Time Machine design pattern
- Adam Trischler (Maluuba Researcher). Talk about question answering system. They are soon to release products Canadian startup, and claim to have better results than Facebook and Google on public datasets.
- Howard Mansell (Facebook AI). Chat about Torch usage in Facebook. The talk was about how Torch is a deep learning tool for research.
- James Zhang (Bloomberg Machine Learning Researcher). Discussion about how to use news in time series prediction.
- Yan Xu (SAS). Talk about how deep learning can be used in marketing automation. SAS is working on predictive modeling.
Pictures